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Terminologies

There are some common terminologies to be introduced.

Terminoloies
1 Observational Studies: Conduct inference based on the data set

we observed, i.e. we did not make any control on the experiment.
2 Experimental Design: Randomly assigning the values of the

exposure and observe the corresponding response.
3 Association: X is positively associated with Y iff X increases

together with Y .
4 Causation: Increase in X results in increase in Y .

In general, we cannot draw causation conclusion under framework of
observation studies due to the existence of confounders.
AIM 1: Accessing causality effect by using observational data set.
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Literature Review

1 Non-parametric methods with binary/categorical exposure
1 Inverse-probability-weighted estimators

(Horvitz and Thompson, 1952)
2 Augmented inverse-probability-weighted (AIPW) estimators

(Scharfstein et al., 1999; Bang and Robins, 2005)
3 Targeted minimum-loss-based estimators

(van der Laan and Rose, 2011)
2 Continuous exposure

Common approach: Discretize the continuous interval into two or
more region and apply above methods under categorial case.

Remark: Undesirable method as we are commonly interested in the
causal dose response curver, which describes the causal relationship
between the exposure and outcome across a continuum of the
exposure
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Literature Review

We further consider existing method dealing with continuous
exposures.

1 Applying parametric models (Robins, 2000 and Zhang et al., 2016)
2 Inference on parameters obtained by projecting a causal

dose-response curve onto a parametric working model.
(Neugebauer and van der Laan, 2007)

3 nonparametric estimation using flexible data-adaptive algorithms
(Rubin and van der Laan, 2006 and Diaz and van der Laan, 2011)

4 estimator based on local linear smoothing (Kennedy et al, 2017)
5 general framework for inference on parameters that fail to be

sufficiently smooth as a function of the data-generating distribution
and for which regular root-n-estimation theory is therefore not
available. (van der Laan et al., 2018)
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Comment on existing methodologies

For the literature on non-parametric estimation of causal
dose-response curves, the large sample inference is not valid and is
sensitive to selection of certain tuning parameters.
Smoothing-based methods are sensitive to choice of kernel function
and bandwidth. The estimators commonly have non-negligible bias.
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Motivation for isotonic regression

In many setting, the causal dose-response curve is a monotone
function For example, exposures such as daily exercise performed,
cigarettes smoked per week and air pollutant levels are all known to
have monotone relationships with various health outcomes.
Recall in the setting of linear regression, we are interested in
estimating the function g s.t.

E(Y |X1, · · · , Xp) = g(X1, · · · , Xp).

For linear regression, we assumed linearity on the model, i.e. restrict
the class of estimating cuver for g to class of the linear function
E(Y |X1, · · · , Xp) = g(X1, · · · , Xp) = β0 + β1X1 + · · ·+ βpXp for some
β0, β1, · · · , βp. However, linearity is usually too strong as the model
assumption. In contrast, we add only trivial restriction on the class of
function under non-parametric function for estimation g.
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Motivation for isotonic regression

However, as mentioned, the estimator in non-parametric methods
might be easily affected by choice of kernel and bandwidth. And as an
intermediate level of assumption, we may assume g to be a monotone
function. Notice that linearity implies monotonicity but the converse
does not holds. The regression with monotonicity assumption is known
as Isotonic Regression.
The following are some advantages of isotonic regression

1 Does not require linearity assumption.
2 Does not require selection of kernel and bandwidth.
3 Invariance to strictly increasing transformation of exposure and on

centring and scaling by factor of n−1/3.
If there is not confounding variables, we can directly estimate the
causal isotonic curve. However as mentioned, the authur attempted
access causality under confounded setting in this paper.
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Notation

1 Y : Response.
2 A: Continuous exposure.
3 W : Vector of covariates.
4 O , (Y,A,W ): Data unit.
5 P0: The true data-generating distribution
6 O = Y ×A×W: Support of P0, where Y,A ⊆ R are intervals and
W ⊆ Rp.
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Parameter of interest

Denote E0 as the expectation under the law P0. Our parameter of
interest, known as G-computed regression function from A to E is
defined as

a 7→ θ0(a) , E0
{
E0(Y |A = a,W )

}
, which has causation interpretation in some scientific contexts. It kind
of measure the effect of A on Y after accounted for W .
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Causal parameter and unadjusted regression function

Adopting the idea of randomnized experiment, for each fixed a ∈ A, we
denote by Y (a) the potential outcome (i.e. a R.V.) under exposure level
A = a. The causal parameter is thus defined as m0 : A → R through

m0(a) , E0
{
Y (a)

}
annd the resulting curve is known as causal dose-response curve.
We can also denote the unadjusted regression function as
r0(a) , E0(Y |A = a), which is the standard quantity of interest in
regression analysis.
Under different set of conditions, we can claim that m0(a) = r0(a) and
m0(a) = θ0(a), meaning that those causal conditions allows us to draw
causation conclusion from observational data set.
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Comparison among quantities

1 Causal dose-response curve: m0(a) , E0
{
Y (a)

}
measures the

intrinsic casual effect of A on Y .
2 G computed regression function: θ0(a) , E0

{
E0(Y |A = a,W )

}
measures the effect of A on Y after accounted for covariates W

3 Unadjusted regression function: r0(a) , E0(Y |A = a) measures
the association between A on Y

Therefore, the strength of causation statement can be made through
these functions are different. Even though we may not be able to
contain all covariates in W , it gives more informative conclusion than
only relying on r0(a).
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Causal condition: m0(a) = r0(a)

Causal condition 1
Suppose that for some a ∈ A,

1 Each unit’s potential outcomes are independent of all other units’
exposures.

2 Y = Y (A), where Y is the response and Y (A) is defined as in
setting of randomnized experiment.

3 A and Y (a) are independent.
4 The marginal density of A is positive at a.

then for such a ∈ A, we have m0(a) = r0(a), i.e. the causal effect for
exposure level A = a.

Remark: Condition (3) is commonly only satisfied in randomnized
trials as usually ther exist some confounders affecting both A and
Y (a), which induce dependency.
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Causal condition: m0(a) = θ0(a)
Condition (3) and (4) are being too strong to be practical, it is natural to
find sufficient condition s.t. inference of θ0(a) give meaningful result.

Causal condition 2
Suppose that for some a ∈ A,

1 Each unit’s potential outcomes are independent of all other units’
exposures.

2 Y = Y (A), where Y is the response and Y (A) is defined as in
setting of randomnized experiment.

3 A and Y (a) are conditionally independent given W .
4 The marginal density of A given W is a.s. positive at a

then for such a ∈ A, we have m0(a) = θ0(a), i.e. the causal effect for
exposure level A = a.

Remark: Whenever m0(a) = θ0(a), the conclusion drawn from
inference can be interpreted as causal statement.
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Notations

1 FP : A → R the distribution function of A under P .
2 Fθ : class of non-decreasing real-valued functions on A.
3 FT : class of strictly increasing and continuous distribution

functions supported on A.
The statistical model to work on is given by

M ,
{
P : θP ∈ Fθ, FP ∈ FT

}
Recall our target: Making inference about

θ0(a) = E0
{
E0(Y |A = a,W )

}
for cts exposure A and monotone θ0 by using independent (NOT
randomnized) observations O1, · · · , On drawn from P0 ∈M, which is
an extension of classical isotonic regression in sense of allowing the
existence of confounders.
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Contribution of paper

Contributions
1 generalizes the unadjusted isotonic regression estimator to the more realistic

scenario in which there is confounding by recorded covariates.
2 investigate finite sample and asymptotic properties of the estimator proposed,

including invariance to strictly increasing transformations of the exposure, doubly
robust consistency and doubly robust convergence in distribution to a
non-degenerate limit.

3 derive practical methods for constructing pointwise confidence intervals,
including intervals that have valid doubly robust calibration.

4 illustrate numerically the practical performance of the estimator.
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Classical least square isotonic regression

Linear regression: find β = β̂ s.t.
∑n
i=1

(
Yi − βAi

)2 is minimized
Isotonic regression: find r = rn s.t.

∑n
i=1

[
Yi − r(Ai)

]2 is minimized
Y1:n: responses
A1:n: continuous exposures
r: any monotone non-decreasing function
rn can be obtained via pool adjacent violators algorithm (PAVA)

Not true without assuming piecewise linearity of r?
PAVA can be used to find best monotone fit Ŷi only

rn can also be represented by greatest convex minorants (GCMs)
Probably because isotonic regression can be formulated as a
convex programming problem
See section 2.3 of the R package isotone’s vignette
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Pool adjacent violators algorithm

Source: Pedregosa, Fabian (2013)
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Pool adjacent violators algorithm

Target: find best monotone fit Ŷi of response Yi
Exposure Ai are ordered in i first, i.e. A1 ≤ A2 ≤ · · · ≤ An
Response Yi may not be monotone as the sorting is done on Ai
Fit Ŷi = rn(Ai) must be monotone in i

That’s why r = rn should be a monotone non-decreasing function
Identifiable without assuming piecewise linearity of r?

Algorithm (sketch):
1 Initialize l := 0, B(0) := n, Ŷ (0)

r := Yr for r = 1, . . . , n
2 Merge Ŷ (l)-values into blocks if Ŷ (l)

r+1 < Ŷ
(l)
r for r = 1, . . . , B(l)

3 Minimize the loss function for each block r, which gives Ŷ (l+1)
r

4 If Ŷ (l)
r+1 < Ŷ

(l)
r for some r, set l = l + 1 and go back to step 2

5 Expand the block values w.r.t. to i = 1, . . . , n
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Greatest convex minorant

GCM of a function f bounded on [a, b]: supremum over all convex
functions g such that g ≤ f

Let Fn be the empirical distribution function of A1:n. It can be shown
that the isotonic regression estimator rn(a) is

the left derivative, evaluated at Fn(a),
of the GCM over the interval [0, 1] of the linear interpolation,

of the cumulative sum diagram
{

1
n

[
i,
∑i
j=0 Y

∗
(i)

]
: i = 0, 1, . . . , n

}
,

where Y ∗(0) := 0 and Y ∗(i) is the response Y sorted by value of
exposure A
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Attractive properties of isotonic regression estimator

No need to choose kernel, bandwidth or any other tuning parameter
The monotone fit restriction is kind of like a kernel already
but it is true that no choice of tuning parameter is needed

Invariant to strictly increasing transformations of A
Uniform consistency on any strict subinterval of A
Limit distribution available

n
1
3
[
rn(a)− r0(a)

] d→
[
4r′0(a)σ2

0(a)/f0(a)
] 1

3W for any interior point
a ∈ A at which r′0(a), f0(a) := F ′0(a) and
σ2

0(a) := E0
[
{Y − r0(a)}2|A = a

]
exist and are positive and

continuous in a neighbourhood of a
W follows Chernoff’s distribution, which often appears in the limit
distribution of monotonicity-constrained estimators
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Definition of proposed estimator

Definition: pointwise outcome

µP (a,w) := EP (Y |A = a,W = w)

for any given P ∈M

Definition: normalized exposure density

gP (a,w) := πP (a|w)/fP (a)

where πP (a|w) is the conditional density evaluated at a given W = w,
fP is the marginal density of A under P

Definition: pseudo-outcome

ξµ,g,Q(y, a, w) := y − µ(a,w)
g(a,w) +

∫
µ(a, z)Q(dz)
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Monotonicity of proposed estimator

Kennedy et al. (2017) used pseudo-outcome to develop local linear
regression for inference of θ0(a). In the setting of this paper, θ0(a) is
known to be monotone

I think the monotonicity of θ0(a) is an assumption
Yet it seems reasonable as continuous treatment usually has
monotone causal effect (if effective) within certain range
Example: daily exercise time (0-2 hours) on life expectancy
Counterexample: daily exercise time (0-12 hours)
So the reasonability of monotonicity may depend on the range of
treatment A (experiemental) or data exploration (observational)

Under monotonicity, it is natural to consider the isotonic regression of
the pseudo-outcomes on A1:n
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Proposed estimation procedure

Estimation of θn(a)
1 Construct estimators µn, gn of µ0, g0 respectively
2 For each a in the unique values of A1:n, compute and set

Γn(a) := 1
n

∑n
i=1 I(−∞,a](Ai)

Yi−µn(Ai,Wi)
gn(Ai,Wi)

+ 1
n2
∑n
i=1

∑n
j=1 I(−∞,a](Ai)µn(Ai,Wj) (1)

3 Compute the GCM Ψ̄n of the set of points
{(0, 0)} ∪ {

(
Fn(Ai),Γn(Ai)

)
: i = 1, 2, . . . , n} over [0, 1]

4 Define θn(a) as the left derivative of Ψ̄n evaluated at Fn(a)
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Asymptotic framework for the proposed estimator

As in Kennedy et al. (2017), θn(a) deviate from classical results
Pseudo-outcomes ξµ,g,Q(y, a, w) are dependent because they
depend on the estimator µn, gn, Qn estimated with all observations
Hence classical results from isotonic regression do not apply
However, θn is of generalized Grenander type
Asymptotic results of Westling and Carone (2020) can be used

We skip the proof of θn to be Grenander type here, which is to show θn
falls in the class of estimator discussed in Westling and Carone (2020)
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Some remarks on monotonicity and generality

Monotonicity: if θ0(a) were only known to be monotone on a fixed
subinterval A0 ⊂ A

We discuss this assumption on page 24
The estimation procedure is still valid by first defining
Fp(a) := P (A ≤ a|A ∈ A0) and Fn as its empirical counterpart
Then replace I(−∞,a](Ai) in equation 1 by I(−∞,a]∩A0(Ai)

Generality: the proposed estimator θn generalizes the classical rn
Condition 1: A ⊥⊥W =⇒ g0(a,w) = 1, so we may take gn = 1
Condition 2: Y |A ⊥⊥W |A =⇒ µn(a,w) = µn(a)
Under these conditions, equation 1 becomes

Γn(a) = 1
n

n∑
i=1

I(−∞,a](Ai)Yi − µn(Ai)

As a result, θn(a) = rn(a) for each a
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Invariance to strictly increasing transform of exposure

θn(a) is invariant to strictly increasing transform H(·) of exposure A
Intuition: composition preserve monotonicity
Desirable property since scale of exposure is often arbitrary
Example: temperature in degrees Fahrenheit or Celsius or in
kelvins
Change of scale does not affect available information

We skip the proof because the intuition is simple (composition of
monotone functions is also monotone)
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Condtions for consistency

Notations:
F : a uniformly bounded class of functions
Q: a finite discrete probability measure
N{ε,F , L2(Q)}: the ε-covering-number, i.e. the smallest number
of L2(Q) balls of radius less than or equal to ε needed to cover F
log

[
supQN{ε,F , L2(Q)}

]
: the uniform ε-entropy of F

Condition 1
There exist constants C, δ,K0,K1,K2 ∈ (0,∞) and V ∈ [0, 2) s.t.,
almost surely as n→∞, µn and gn are contained in classes of
functions F0 and F1 respectively, satisfying

1 |µ| ≤ K0,∀µ ∈ F0, and K1 ≤ g ≤ K2,∀g ∈ F1
2 log

[
supQN{ε,F0, L2(Q)}

]
≤ Cε−V/2 and

log
[
supQN{ε,F1, L2(Q)}

]
≤ Cε−V ,∀ε ≤ δ
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Condtions for consistency

P0: the true data-generating distribution but not projection

Condition 2

There exists µ∞ ∈ F0 and g∞ ∈ F1 s.t. P0(µn − µ∞)2 p→ 0 and
P0(gn − g∞)2 p→ 0

Condition 3
There exist subsets S1,S2,S3 of A×W s.t. P0(S1 ∪ S2 ∪ S3) = 1 and

1 µ∞(a,w) = µ0(a,w), ∀(a,w) ∈ S1
2 g∞(a,w) = g0(a,w), ∀(a,w) ∈ S2
3 µ∞(a,w) = µ0(a,w) and g∞(a,w) = g0(a,w),∀(a,w) ∈ S3

These conditions control the uniform entropy of certain classes of
functions, which is related to empirical process theory. A thorough
treatment is provided in van der Vaart and Wellner (1996)
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Consistency

Theorem 1

If Conditions 1-3 hold, then θn(a) p→ θ0(a) for any value a ∈ A s.t.
F0(a) ∈ (0, 1), θ0 is continuous at a and F0 is strictly increasing in a
neighbourhood of a.

If θ0 is uniformly continuous and F0 is strictly increasing on A, then
supa∈A0

[
θn(a)− θ0(a)

] p
0 for any bounded strict subinterval A0 ⊂ A.

(Well-known) boundary issues with Grenander-type estimators:
In the pointwise statement, F0(a) is required to be in [0, 1]
Similarly, the uniform statement only covers strict subintervals of A
Various remedies have been proposed before to mitigate this
Potential direction for future research
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Remark on Condtions for consistency

Remark on Condition 1
Condition 1 requires that µn and gn eventually be contained in
uniformly bounded function classes that are sufficiently small for
certain empirical process terms to be controlled. This is satisfied by
parametric classes and many infinite dimensional function classes.
See chapter 2.6 of van der Vaart and Wellner (1996).

There is also an asymmetry between the entropy requirements for F0
and F1 in part 2 of Condition 1. This is due to the term∫ ∫ a
−∞ µn(u,w)Fn(du)Qn(dw) appearing in Γn(a). To control this term,

an upper bound of the form
∫ 1

0 log
[
supQN{ε,F0, L2(Q)}

]
dε from the

theory of empirical U -process is used (Nolan and Pollard, 1987).

The later part of this paper (section 3.7) considers the use of
cross-fitting to avoid these entropy conditions in Condition 1.
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Remark on Condtions for consistency

Remark on Condition 2 and 3
Condition 2 requires that µn and gn tend to limit functions µ∞ and g∞,
and Condition 3 requires that requires that either µ∞(a,w) = µ0(a,w)
or g∞(a,w) = g0(a,w) for (F0 ×Q0) almost every (a,w).

This is equivalent to saying that µn or gn is consistent?
Seems to be in line with Kennedy et al. (2017)

If either
1 S1 and S3 are null sets or
2 S2 and S3 are null sets,

then Condition 3 is known simply as double robustness of the
estimator θn relative to the nuisance functions µ0 and g0: θn is
consistent as long as µ∞ = µ0 or g∞ = g0. However, Condition 3 is
more general than classical double robustness as at least one of µn or
gn tends to the truth for only almost every point in the domain.
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Double robustness

Multiply robustness: preserve consistency even if a subset of the N
nuisance models is mispecified in the procedure
Double robustness: N = 2, so one model can be mispecified

Example: inverse probability weighted (IPW) estimator
Yi: response; Ai ∈ {0, 1}: treatment; W : covariates
Estimator: µ̂i−IPW = 1

n

∑n
i=1

AiYi
π0(Wi) where π0(W ) = P (A = 1|W )

Often infeasible since functional form π0(W ) is unknown
(Example) nuisance model 1: π0(W ) = π(W ;α0) = exp(αT

0 W̃ )
1+exp(αT

0 W̃ )

µ̂f−IPW = 1
n

∑n
i=1

AiYi

π(Wi;α̂)

Augmented IPW (AIPW) estimator:
µ̂f−φ−IPW = 1

n

∑n
i=1

[
AiYi

π(Wi;α̂) +
{

1− Ai

π(Wi;α̂)

}
φ(Wi)

]
Nuisance model 2: φ(W ) = E(Y |W,A = 1) is the most efficient

See Daniel (2017) for a simple introduction to this topic
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Conditions for convergence in distribution

Notations:
d(h1, h2; a, ε,S): pseudodistance; σ2

0(a,w): conditional variance

d(h1, h2; a, ε,S) :=
√

sup|u−a|≤ε E0
[
IS(u,W ){h1u,W )−h2(u,W )}2

]
σ2

0(a,w) := E0
[
{Y − µ0(A,W )}2|A = a,W = w

]
Condition 4
There exists ε0 > 0 s.t.

1 max
[
d(µn, µ∞; a, ε0,S1), d(gn, g∞; a, ε0,S2)

]
= op(n−1/3)

2 max
[
d(µn, µ∞; a, ε0,S2), d(gn, g∞; a, ε0,S1)

]
= op(1)

3 d(µn, µ∞; a, ε0,S3)d(gn, g∞; a, ε0,S3) = op(n−1/3)

Condition 5
F0, µ0, µ∞, g0, g∞ and σ2

0 are continuously differentiable in a
neighbourhood of a uniformly over w ∈ W
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Convergence in distribution

Theorem 2
If Conditions 1-5 hold, then

n1/3{θn(a)− θ0(a)} d→
{4θ′0(a)κ0(a)

f0(a)

}1/3
W

for any a ∈ A such that F0(a) ∈ (0, 1), where W follows the standard
Chernoff distribution and

κ0(a) :=E0

(
E0

[{
Y−µ∞(a,W )
g∞(a,W ) +θ∞(a)−θ0(a)

}2
∣∣∣A=a,W

]
g0(a,W )

)
with θ∞(a) denoting

∫
µ∞(a,w)Q0(dw).

We skip the comparison between the limit distributions of θn and rn as
it is paritally discussed in p.27. In short, their limit distributions only
differ in concentration, which is analogous to findings in linear
regression
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Remark on Conditions for convergence in distribution

Remark on Condition 4 and 5
The requirements of Condition 4 is equivalent to

1 On S1 where µn is consistent but gn is not, µn converges faster
than n−1/3 uniformly in a neighbourhood of a,

2 Similarly for gn on S2 and
3 On S3 where both µn and gn are consistent, only the product of

their rates of convergence must be faster than n−1/3

This suggests the possibility of performing doubly robust inference for
θ0(a), which is explored in section 4. Note that as discussed in p.34,
these conditions are more general than the classical double robustness

We skip the discussion of plug-in estimator θµn(a), which can achieve
faster rate of convergence than θn(a) but hinges entirely on the
consistency of µn and may not admit a tractable limit theory
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Grenander-type estimation without domain transform

The proposed estimator θn(a) coincides with a generalized
Grenander-type estimator for which the marginal exposure empirical
distribution function is used as domain transformation

An alternative estimator θ̄n could be constructed via Grenander-type
estimation without the use of any domain transformation. We skip its
construction here but there are several points to note:

θ̄n does not generalize the classical isotonic regression
θ̄n is not invariant to strictly increasing transform of A
Domain of A needs to be known/chosen in defining θ̄n
When µ∞ = µ0, θn(a) and θ̄n may have the same limit distribution
When µ∞ 6= µ0, θ̄n is dominated by θn(a) in AMSE sense

The transformation improves statistical efficiency in this case
Relative gain in efficiency is directly related to the asymptotic bias
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Discrete domains

When A is discrete, θn(a) is asymptotically equivalent to the AIPW
estimator, which is paritally discussed in p.35

As a result, the large sample properties of θn(a) can be derived from
the large sample properties of the AIPW estimator and asymptotically
valid inference can be obtained by using standard
influence-function-based techniques

We skip the proof here as it is like realizing the isotonic regression of
pseudo-outcome under discrete exposure coincides with the AIPW
estimator. Instead, we shall have a short discussion on influence
function
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Influence function

Definition of influence function (Hampel et al., 1986)
Let T (F ) be a statistical functional where F is a distribution. The
influence function of T at F is given by

IF (x;T, F ) := lim
t↓0

T
[
(1− t)F + tδx

]
− T (F )

t

in those x ∈ X where this limit exists.

A complete discussion of this definition usually requires Gâteaux
differentiability. We cover some of its usage instead:

An estimator θ̂ ≈ θ(P0) + En
[
IF (X)

]
can be dominated by a

single outlier unless IF is bounded
Asymptotic efficiency bound (Bias, Variance)
Distributional decomposition, partial identification etc.

See this note for a quick summary
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Large sample results for causal effects

The result so far concerns about the causal dose-response a 7→ m0(a),
which may not hold for the causal effect (a1, a2) 7→ m0(a1)−m0(a2)

If the identification conditions discussed in Section 1.2 applied to each
of a1 and a2, such causal effects can be identified with the observed
data parameter θ0(a1)− θ0(a2)

If the condtions of Theorem 1 hold for both a1 and a2, we can establish
consistency via the use of continuous mapping theorem

However, Theorem 2 only provides marginal distributional results. Joint
convergence result is thus required for inference of causal effect
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(Joint) convergence for causal effects

Theorem 3

Define Zn(a1, a2) :=
(
n1/3{θn(a1)− θ0(a1)

}
, n1/3{θn(a2)− θ0(a2)

})
. If

Conditions 1-5 hold for a ∈ {a1, a2} ⊂ A and F0(a1), F0(a2) ∈ (0, 1),
then

Zn(a1, a2) d→
({

4τ0(a1)
}1/3W1,

{
4τ0(a2)

}1/3W2
)

where W1,W2 are independent standard Chernoff distributions and the
scale parameter τ0 = θ′0(a)κ0(a)

f0(a) is as defined in theorem 2.

Note that Theorem 3 implies

n1/3
[{
θn(a1)−θn(a2)

}
−
{
θ0(a1)−θ0(a2)

}]
d→
{

4τ0(a1)
}1/3

W1−
{

4τ0(a2)
}1/3

W2
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Cross-fitting to avoid empirical process conditions

In observational studies, researchers can rarely specify a priori correct
parametric models for µ0 and g0. This motivates use of data-adaptive
estimators to meet Conditions 2 and 3

However, such estimators often leads to violation of Condition 1, or it
may be onerous to determine that they do not. See slide p.33

In the context of asymptotically linear estimators, it has been noted
that cross-fitting nuisance estimators can resolve this challenge by
eliminating empirical process conditions

Therefore, this paper proposes cross-fitting of µn and gn to avoid
entropy conditions in Theorem 1 and 2
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Estimation with cross-fitting

Estimation procedure with cross-fitting
1 Fix V ∈ {2, 3, . . . , n/2}
2 Randomly partition the indices {1, 2, . . . , n} into V sets
Vn,1,Vn,2, . . . ,Vn,V

3 Assume N := n/V ∈ Z+. For each v ∈ {1, 2, . . . , V }:
1 Define Tn,v := {Oi : i /∈ Vn,v} as the training set for fold v
2 Construct µn,v and gn,v using only observations from Tn,v

4 Define pointwise the cross-fitted estimator Γ◦n of Γ0 as
Γ◦n(a) := 1

V

∑V
v=1

[
1
N

∑
i∈Vn,v I(−∞,a](Ai)

Yi−µn,v(Ai,Wi)
gn,v(Ai,Wi)

+ 1
N2
∑
i,j∈Vn,v I(−∞,a](Ai)µn,v(Ai,Wj)

]
5 Construct the cross-fitted estimator θ◦n as in p.25

Remark: all results hold as long as maxv n/|Vn,v| = Op(1)
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Conditions for convergence under cross-fitting

Condition 6
There exist constants C ′, δ′,K ′0,K ′1,K ′2,K ′3 ∈ (0,∞) s.t., almost surely
as n→∞ and for all v, µn,v and gn,v are contained in classes of
functions F ′0 and F ′1 respectively, satisfying

1 |µ| ≤ K ′0,∀µ ∈ F ′0, and K ′1 ≤ g ≤ K ′2,∀g ∈ F ′1, and
2 σ2

0(a,w) ≤ K ′3 for almost all a and w

Condition 7

There exist µ∞ ∈ F ′0 and g∞ ∈ F ′1 s.t. maxv P0(µn,v − µ∞)2 p→ 0 and
maxv P0(gn,v − g∞)2 p→ 0
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Conditions for convergence under cross-fitting

Condition 8
There exists ε0 > 0 s.t.

1 max
[
d(µn,v, µ∞; a, ε0,S1), d(gn,v, g∞; a, ε0,S2)

]
= op(n−1/3)

2 max
[
d(µn,v, µ∞; a, ε0,S2), d(gn,v, g∞; a, ε0,S1)

]
= op(1)

3 d(µn,v, µ∞; a, ε0,S3)d(gn,v, g∞; a, ε0,S3) = op(n−1/3)

Remark: Conditions 6, 7 and 8 are analogue of Conditions 1, 2 and 4
respectively under cross-fitting

Billy, Heman, Martin Causal Isotonic Regression Summer, 2020 47 / 82



...

Convergence under cross-fitting

Theorem 4

If Conditions 6, 7 and 3 hold, then θ◦n(a) p→ θ0(a) for any value a ∈ A
s.t. F0(a) ∈ (0, 1), θ0 is continuous at a and F0 is strictly increasing in a
neighbourhood of a.

If θ0 is uniformly continuous and F0 is strictly increasing on A, then
supa∈A0

[
θ◦n(a)− θ0(a)

] p
0 for any bounded strict subinterval A0 ⊂ A.

Theorem 5
If Conditions 6, 7, 3, 8, 5 hold, then

n1/3{θ◦n(a)− θ0(a)} d→ {4τ0(a)}1/3 W

for any a ∈ A such that F0(a) ∈ (0, 1), where W follows the standard
Chernoff distribution.
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Wald-type Confidence Interval

Wald-type CI

Since the limit distribution of n1/3
[
θn(a)− θ0(a)

]
is symmetric around

zero by the result of Theorem 2, writing τ0(a) := θ
′
0(a)κ0(a)/f0(a) and

denoting by τn(a) any consistent estimator of τ0(a) , then a Wald-type
1− α level asymptotic confidence interval for θ0(a) is given by

[
θn(a)−

[
4τn(a)
n

]1/3
q1−α/2, θn(a) +

[
4τn(a)
n

]1/3
q1−α/2

]
,

where qp denotes the pth quantile of W.
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Wald-type Confidence Interval

Estimation of τ0(a)
Since estimation of τ0(a) involves, it can be estimated either direcly or
indirectly, estimation of θ

′
0(a)/f0(a) and κ0(a). For direct estimation, we

note that θ
′
0(a)/f0(a) = ψ

′
0(F0(a)) with ψ0 := θ0 ◦ F−1

0 .It suggests that
1 Estimate θ

′
0 and f0 separately and consider the ratio of these of

estimators; or
2 Estimate ψ

′
0 directly and compose it with the estimator of F0.

For indirect estimation, it involves the invariance property of the scale
estimator to strictly monotone transformations of the exposure. To
estimate ψ

′
0, we recall that the estimator ψn from Section 2 is a step

function and is not differentiable. A Natural Solution consists of
computing the derivative of a smoothed version of ψn. We have found
local quadratic kernel smoothing of points
{(uj , ψn(uj)) : j = 1, 2, · · · , }, for uj the midpoints of the jump points of
ψn, to work well in practice.
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Wald-type Confidence Interval

Wald-type CIs for causal effects
Theorem 3 is used to construct the Wald-type CIs for causal effects in
the form θ0(a1)− θ0(a2), then a Wald-type 1− α level asymptotic
confidence interval for θ0(a1)− θ0(a2) is given by

[
θn(a1)− θn(a2)− q̄n,1−α/2n

−1/3, θn(a1)− θn(a2) + q̄n,1−α/2n
−1/3

]

where q̄n,1−α/2 denotes the (1− α/2) quantile of[
4τn(a1)

]1/3W1 −
[
4τn(a2)

]1/3W2, W1 and W2 are independent
Chernoff distributions, using Monte Carlo simulations.
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Scale estimation relying on consistent nuisance
estimation

Plug-in estimator of κ0(a)
Consider settings in which both µn and gn are consistent estimators. In
such cases, we have κ0(a) = E0

[
σ2

0(a,W )/g0(a,W )
]

with σ2
0(a,W )

denoting the conditional variance E0{
[
Y − µ0(a,W )

]2|A = a,W = w}.
Then, a plug-in estimator of κ0(a) is given by

κn(a) := 1
n

∑n
i=1

σ2
n(a,Wi)
gn(a,Wi)

Any regression technique could be used to estimate the conditional
expectation of Zn :=

[
Y − µ(a,W )

]2 given A and W. If µn, gn and σ2
n

are consistent estimator, then κn(a) is a consistent estimator.
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Doubly-robust scale estimation

Aim: To construct an estimator of κ0(a) consistent even of either
µ∞ 6= µ0 or g∞ 6= g0

Doubly-robust estimator of κ0(a)
Note that κ0(a) = limh↓0E0

[
Kh(F0(A)− F0(a))η∞(Y,A,W )

]
, where

Kh : u 7→ h−1K(uh−1) for some bounded density function K with
bounded support, and defined

η∞ : (y, a, w) 7→
[
y−µ∞(a,w)
g∞(a,w) + θ∞(a)− θ0(a)

]2

Setting θµn(a) :=
∫
µn(a,w)Qn(dw) with Qn the empirical distribution

based on W1,W2, · · · ,Wn, and define

κ∗n,h(a) = 1
n

∑n
i=1Kh(Fn(Ai)− Fn(a))ηn(Yi, Ai,Wi)

by substituting µ∞, g∞, θ∞, θ0 by µn, gn, θµn , θn.
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Doubly-robust scale estimation

Doubly-robust estimator of κ0(a)(Con’d)

Under conditions (A1)-(A5), it can be shown that κ∗n,hn(a) P→ κ0(a) by
standard kernel smoothing arguments for any sequence hn → 0. In
particular, κ∗n,hn(a) is consistent under the general form of
doubly-robustness specified by condition(A3).

Appropriate value of bandwidth h
We propose the following empirical criterion:

1 Define the integrated scale γ0 :=
∫
κ0(a)F0(da) and construct the

estimator γn(h) :=
∫
κn,h(a)Fn(da) for any candidate h > 0.

2 Observe that γ0 = E0[η∞(Y,A,W )], which suggest
η̄n := 1

n

∑n
i=1 ηn(Yi, Ai,Wi).

It motivates us to define h∗n := argminh[γn(h)− η̄n]2.

The proposed doubly-robust estimator of κ0(a) is κn,DR(a) := κn,h∗n(a).
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Doubly-robust scale estimation

Remarks
1 κn,DR(a) only depends on A and a through the ranks Fn(A) and
Fn(a). Hence, the estimator is invariant to strictly monotone
transformations of the exposure.

2 If µn(a,w) = µn(a) does not depend on w and gn = 1, κn,DR(a)
tends to the conditional variance V ar0(Y |A = a), which is
precisely the scale parameter appearing in standard isotonic
regression.
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Confidence intervals via sample splitting

Sample splitting method recently proposed by Banerjee er al.(2019)
could also be used to perform inference. To implement the approach in
our context: (1)we randomly split the sample into m subsets of roughly
equal size;(2) perform the estimation procedure on each subset to
form subset-specific estimates θn,1, θn,2, · · · , θn,m; and (3) define
θ̄n,m(a) := 1

m

∑m
j=1 θn,j(a). If m > 1 is fixed, then under mild conditions

θ̄n,m(a) has strictly better asymptotic MSE than θn(a).

CI via sample splitting
For moderate m, the asymptotic 1− α level confidence interval for
θ0(a) is given by[

θ̄n,m(a)− σn,m(a)√
mn1/3 t1−α/2,m−1, θ̄n,m(a) + σn,m(a)√

mn1/3 t1−α/2,m−1

]

where σ2
n,m(a) := 1

m−1
∑m
j=1[θn,j(a)− θ̄n,m(a)]2 and t1−α/2,m−1 is the

(1− α/2) quantile of the t-distribution with m− 1 degrees of freedom.
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Numerical Studies

Goals: Perform numerical experiments to assess the performance of
the proposed estimators of θ0(a) and of the three approaches for
constructing confidence intervals, which we also compare to that of the
local linear estimator and associated confidence intervals proposed in
Kennedy et al.(2017).

Idea of Data Generating Process
1 Generate W ∈ R4 as a vector of four independent standard

normal variate.
2 Generate U given W , and then transform U to obtain A. (∵ the

estimation procedures requires estimating the conditional density
of U := F0(A) given W )
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Data Generating Process

1 W ∼ N(0,
∑

)
where

∑
is the 4× 4 diagonal matrix with value 1.

2 U ∼ ḡ0(u|w) = I[0,1](u){λ(w) + 2u[1− λ(w)]}
where λ(w) := 0.1 + 1.8 expit(β>w).

3 A ∼ 0.5N(−2, 1) + 0.5N(2, 1)
4 [Y |A = a,W = w] ∼ Bern(µ0(a,w))

where µ0(a,w) := expit(γ>1 w + γ>2 wa+ γ3a
2)

5 β = (−1,−1, 1, 1)>, γ1 = (−1,−1,−1, 1, 1)>, γ1 = (3,−1,−1, 1, 1)>
and γ3 = 3
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Estimation and Conditions

Estimator used
1 Causal isotonic regression estimator θn.
2 Local linear estimator of Kennedy et al.(2017) with data-driven

bandwidth selection procedure proposed in Section 3.5.
3 Sample-splitting version of θn with m = 5 splits.

Settings
1 Both µn and gn are consistent.
2 Only µn is consistent.
3 Only gn is consistent.
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Estimation and Conditions

Estimator under settings
1 If µn and gn are consistent, then logistic regression model and

maximum likelihood estimator based on the correctly specified
parametric model are used.

2 If µn is inconsistent, then logistic regression model is used but
omit covariates W3,W4 and all interactions.

3 If gn is inconsistent, then posit the parametric model as before but
omit W3 and W4.
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Confidence intervals for causal effect

Construction of CIs
Constructing pointwise confidence intervals for θ0 in each setting from
section 4 using Plug-in and doubly-robust estimators of κ0(a). We
expect that

1 asymptotically correct coverage rates for each of the three
settings when doubly-robust estimator of κ0(a) is used; while

2 asymptotically correct coverage rates for the first setting when
Plug-in estimator of κ0(a) is used.

As before, pointwise confidence intervals for the local linear estimator
and the sample splitting procedure will be demonstrated also. And, we
consider the performance of these inferential procedures for values of
a between -3 and 3.
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Simulation Results

Adjusted and unadjusted regression
For n = 5000, note that θ0(a) 6= τ0(a) for a 6= 0. Since the relationship
between Y and A is confounding by W, the unadjusted regression
curve dose not have a causal interpretation. Therefore, the marginal
isotonic regression estimator will not be consistent for the true causal
parameter.
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Simulation Results
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Simulation Results

Standard error
1 The standard error of the local linear estimator is smaller than that

of θn, is expected due to the fast rate of convergence.
2 The standard deviation of the local linear estimator appears to

decrease faster than n−1/3.
3 Inconsistent estimation of the propensity has little impact on the

standard errors of any of the estimators but inconsistent
estimation of the outcome regression not.
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Simulation Results
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Simulation Results

Absolute bias
1 The estimator of θn has smaller absolute bias than the local linear

estimator, and its absolute bias decreases faster than n−1/3.
2 The absolute bias of the local linear estimator depends strongly

on a, and in particular is largest where the second derivative of θ0
is larger in absolute value.

3 The sample splitting estimator has larger absolute bias than θn
since it inherits the bias of θn/m. The bias is large for values of a in
the tails of the marginal distribution of A.
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Simulation Results
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Simulation Results

Coverage of pointwise 95% confidence intervals
1 Both plug-in and doubly-robust estimator intervals centered

around θn, the coverage improves as n grows.
2 Under correct specification of outcome and propensity regression

models, the plug-in method attains close to nominal coverage.
When the propensity estimator is inconsistent, the plug-in method
still performs well in this case. When µn is consistent, the plug-in
method is very conservative for positive values of a.

3 The doubly-robust method attains close to nominal coverage for
large samples as one of gn or µn is consistent.

4 The local linear estimator has poor coverage for values of a where
the bias of the estimator is large.

5 Sample-splitting method performs excellent except perhaps the
value of a in the tails when n is small or moderate.
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Simulation Results

A simulation study is conducted to illustrate the performance of the
proposed procedures when machine learning techniques are used to
construct µn and gn.

Estimator under settings
Consider the estimator θ◦n obtained via cross-fitting (mentioned in
section 3.7).

1 If µn is consistent, then use Super Learner (van der Laan et al.
2017)

2 If gn is consistent, then used the method proposed by Diaz and
van der Laan(2011) with covariate vector (W1,W2,W3,W4).

3 If µn or gn is inconsistent, then omit covariates W1 and W2.
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Simulation Results
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Simulation Results

Coverage of 95% of confident intervals
1 The plug-in method performs well which achieve very close to

nominal coverage under both consistent settings, even propensity
is inconsistently estimated.

2 The doubly-robust method is anti-conservative under both
inconsistent settings and also when the propensity is
inconsistently estimated. Good coverage rates are also achieved
when the outcome regression is inconsistently estimated.

3 Cross fitting has little impact on coverage.
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Simulation Results

Conclusion of results
1 For plug-in method, under the inconsistent estimation of any

nuisance function, the scale parameter is biased and its variance
decreases relatively quickly with sample size by the simple
empirical average of estimated functions.

2 For doubly-robust method, the scale parameter is asymptotically
unbiased but its variance decreases much slower with sample
size.
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Literature Review on BMI and cells response

Some previous scientific literature indicates that
1 BMI is inversely associated with immune responses to vaccination
2 higher BMI might lead to impaired immune responses
3 obesity reduced hepatitis B immune responses through

leptin-induced systemic and B cell intrinsic inflammation, impaired
T cell responses

AIM: assess the covariate-adjusted relationship between BMI and
CD4+ T-cell responses using data from a collection of clinical trials of
candidate HIV vaccines
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Comment on previous literature

1 Jin et al. (2015): low BMI participants had a statistically
significantly greater response rate than high BMI participants by
using Fisher’s exact test.
Comment: Marginal comparison can be misleading due to
existence of confounders such as age and sex.

2 Jin et al. (2015): logistic regression of the binary CD4+ responses
against sex, age, BMI (not discretized), vaccination dose and
number of vaccinations.
Comment: adjusted odds ratio has a formal causal interpretation
only under strong parametric assumptions.

Comparetively, the method proposed in this paper can identify the
covariate-adjusted dose-response function θ0 with the causal
dose-response curve without making parametric assumptions.
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Argument in Causal inference

Some researchers suggest that causal model should always be tied to
hypothetical randomized experiments. However, randominzed
experiments are commonly not practical. For example,

1 Not ethical to force someone to smoke or not to smoke
2 Impossible to assign the BMI to the participants randomly.

one may think it is not appropriate to interpret the G-computed
regression function θ0(a) in causal manner.
However, it provides a meaningful summary of the relationship
between BMI and immune response accounting for measured potential
confounders.
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Result

The graph refer to the estimated probabilities of CD4+ T-cell response
and 95% pointwise confidence intervals as a function of BMI, adjusted
for sex, age, number of vaccinations received, vaccine dose and study
with

1 Estimator proposed here
2 Local linear estimator of Kennedy et al. (2017)
3 Sample splitting version of our estimator with m = 5 splits
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Furture direction

1 Inference on a monotone causal dose-response curve when
outcome data are only observed subject to potential coarsening,
such as censoring, truncation or missingness

2 Develop tests of the monotonicity assumption.
3 Develop methods for uniform inference.
4 Inferential methods that do not require estimation of additional

nuisance parameters or sample splitting
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Comparison between methods

There is some tradeoff between local linear smoothing and
monotonicity-based methods.

1 Convergence rate of regression estimator:
faster for local linear regression estimator; n−2/5 VS n−1/3 for
monotonicity based method.

2 Local linear smoothing: Limit distribution involves an asymptotic
bias term depending on the second derivative of the true function,
so confidence intervals based on optimally chosen tuning
parameters provide asymptotically correct coverage only for a
smoothed parameter rather than the true parameter of interest.

3 Monotonicity based: Do not require choosing a tuning parameter,
are invariant to strictly increasing transformations of the exposure
and their limit theory does not include any asymptotic bias.
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